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abstractOBJECTIVES: Data guiding abusive head trauma (AHT) diagnosis rest on case-control studies that
have been criticized for circularity. We wished to sort children with neurologic injury using
mathematical algorithms, without reference to physicians’ diagnoses or predetermined
diagnostic criteria, and to compare the results to existing AHT data, physicians’ diagnoses, and
a proposed triad of findings.

METHODS: Unsupervised cluster analysis of an existing data set regarding 500 young patients
with acute head injury hospitalized for intensive care. Three cluster algorithms were used to
sort (partition) patients into subpopulations (clusters) on the basis of 32 reliable (k > 0.6)
clinical and radiologic variables. P values and odds ratios (ORs) identified variables most
predictive of partitioning.

RESULTS: The full cohort partitioned into 2 clusters. Variables substantially (P < .001 and OR>

10 in all 3 cluster algorithms) more prevalent in cluster 1 were imaging indications of brain
hypoxemia, ischemia, and/or swelling; acute encephalopathy, particularly when lasting >24
hours; respiratory compromise; subdural hemorrhage or fluid collection; and
ophthalmologist-confirmed retinoschisis. Variables substantially (P < .001 and OR < 0.10 in
any cluster algorithm) more prevalent in cluster 2 were linear parietal skull fracture and
epidural hematoma. Postpartitioning analysis revealed that cluster 1 had a high prevalence of
physician-diagnosed abuse.

CONCLUSIONS: Three cluster algorithms partitioned the population into 2 clusters without
reference to predetermined diagnostic criteria or clinical opinion about the nature of AHT.
Clinical difference between clusters replicated differences previously described in
comparisons of AHT with non-AHT. Algorithmic partition was predictive of physician
diagnosis and of the triad of findings heavily discussed in AHT literature.
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WHAT’S KNOWN ON THIS SUBJECT: Existing literature on
abusive head trauma (AHT) relies on presumptions about
abuse diagnosis to separate cases from controls to
identify patterns of clinical findings associated with
abuse. This literature has been criticized for circular
reasoning.

WHAT THIS STUDY ADDS: Partition by 3 cluster
algorithms revealed subpopulations among children with
head injury without reference to predetermined
diagnostic criteria or clinical opinion about the nature of
AHT. Clinical difference between clusters replicated
differences previously described in comparisons of AHT
with non-AHT.
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Neurologic injury resulting from
inflicted trauma is a substantial
cause of morbidity and mortality in
infants and young children.1–13

Clinicians caring for children with
neurologic injury have the
additional task of recognizing
children whose injuries are the
result of abusive head trauma
(AHT). The scientific foundation for
identifying AHT largely rests on a
series of case-control studies that
compare abused with nonabused
children and on meta-analyses of
those studies.14–30 Some authors
have suggested that much of this
literature is invalid because of
circularity. They find that potential
indicators of abuse being studied
are used in assigning children as
cases or controls.31 Additionally,
authors have opined that child
abuse pediatricians routinely
diagnose AHT solely on the basis of
the presence of 3 findings: subdural
hemorrhage (SDH), encephalopathy,
and retinal hemorrhage (RH),
together known as the triad. They
assert that the triad lacks sufficient
research validation to support this
diagnosis.31–33 These critiques
question the possibility of
identifying a subpopulation of
children with AHT within the larger
population of children with
neurologic injury, both in research
and in clinical practice.

Cluster analysis is a family of
exploratory tools used to explore
data sets to see how the data points
are distributed: whether they are
homogenous, distributed along a
spectrum without clear division, or
divisible into one or more subsets.34

Cluster analysis separates
(partitions) data sets into groups
(clusters) on the basis of patterns in
the data and returns a measurement
of the degree to which they are
distinct. As an exploratory tool, the
success of a cluster model is judged
both by its mathematical outcomes
and by how interesting the partition

is to broader questions in the field
of study. As applied to a population
of children with neurologic injury,
cluster analysis may identify the
existence and characteristics of
naturally occurring, recognizable
subpopulations (clusters). Although
cluster analysis cannot be used to
specify the cause for the latent
structure, the identification of
clusters implies that such a cause
exists. That cause may be inferred
from the nature of the identified
data patterns and by comparing the
results to that of other studies in
which researchers directly address
potential causes.

We conducted a retrospective
secondary analysis of the combined
Pediatric Brain Injury Network
(PediBIRN) derivation and
validation study data sets (N 5
500).35,36 We hypothesized that
cluster analysis, applied to a cohort
of young, hospitalized patients with
acute neurotrauma, would identify
clusters of patients with a discreet
clinical presentation. We further
hypothesized that one or more
clusters would have a relationship
to previously described clinical
descriptions, historical indications,
and physician diagnosis of AHT.
Here, we report the results of 3
cluster analysis algorithms, compare
and contrast the patients within
each cluster, and draw conclusions
regarding the relationships between
cluster assignment, physicians’
diagnosis of AHT, and the concept of
the triad.

METHODS

Study Design

We applied 3 different cluster
algorithms to sort PediBIRN patients
into distinct cohorts. We then
compared the frequency of
prospectively defined clinical
findings across clusters defined by
each algorithm and by the presence
or absence of the triad. Additionally,

we compared the cluster partitions
with each other, pairwise, to assess
their similarity.

Population

The PediBIRN patient population
used for this secondary analysis
includes 500 children aged <3 years
hospitalized between 2010 and
2013 across 18 PICUs for
management of acute, symptomatic,
and traumatic closed cranial or
intracranial injury identified by
computed tomography (CT) scan or
MRI from the PediBIRN derivation
and validation studies.35,36 Eligible
children were enrolled consecutively
by each participating center.
Children with preexisting brain
abnormalities and children injured
in motor vehicle collisions were
excluded. All 500 children in the
PediBIRN database were included in
cluster analysis.

Data

For each qualifying patient,
PediBIRN investigators captured
prospective data regarding patients’
symptoms, clinical and imaging
findings, historical features, local
diagnostic impression, and the
decision to report the case to
children’s protective services.35,36

Explanations of terms were
incorporated into the data collection
tool; for instance, encephalopathy
was defined as “clear impairment or
loss of consciousness.” During the
PediBIRN derivation study of 209
patients at 14 sites, a second
physician independently entered the
same data points for 20% of
patients at each individual site.35

Data used in cluster analysis met the
following criteria: the variable
possessed sufficient interrater
reliability, as evidenced by a k score
>0.6 in the derivation study, and
the variable described an objective
feature, such as symptoms,
examination findings, radiologic
findings, and clinical course. Data
elements that reflected some
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subjective assessment, such as
consistency of provided history, final
diagnostic impression, or child
protective services reporting
decisions, were not used in cluster
analysis but were analyzed when
comparing the resulting clusters.

Cluster Analysis

Throughout the article, we will use
the word “cluster” to indicate a
group of patients identified by 1 of
the 3 cluster algorithms, “partition”
as a verb to indicate the process of
dividing patients into clusters by 1
of the 3 cluster algorithms, and
“partition” as a noun to indicate the
structure of clusters across the
entire research cohort developed by
1 of the 3 cluster algorithms. The
500 PediBIRN patients were
partitioned by using 3 different
cluster analysis algorithms: K-means
clustering, divisive hierarchical
clustering, and agglomerative
hierarchical clustering.34 Cluster
analysis was performed in the
statistical package R, version 3.6.2,
by using the “pam,” “diana,” and
“hclust” commands.37 Because data
included predominantly
dichotomous but also continuous
data, Gower's method for measuring
distance was used for cluster
algorithms.38

The K-means algorithm requires
that the statistician specify the
number of desired clusters. K-means
clustering was applied, specifying 2
through 10 clusters, producing 9
separate partitions. The resulting 9
partitions were then evaluated by 2
methods, silhouette width and gap
statistic, to determine which single
K-means partition had the best
mathematical characteristics.34,39

The optimal cluster number was
chosen such that silhouette width
was maximized and gap statistic
was maximized and within 1 SD of
the next larger number of clusters.
In divisive and agglomerative
hierarchical clustering the

“complete” or “farthest neighbor”
method was used. The divisive and
agglomerative clustering algorithms
each produce a tree of clusters and
subclusters. The level in each tree
producing a cluster number
matching the optimized K-means
partition was chosen for analysis, 1
partition for divisive hierarchical
clustering and 1 partition for
agglomerative hierarchical
clustering.

We also divided the cohort into 2
groups by the presence or absence
of the triad. For this process, we
defined the triad as the presence of
any SDH(s) or fluid collection(s),
acute encephalopathy before
admission, and RH(s) described by
an ophthalmologist as dense,
extensive, covering a large surface
area and/or extending to the ora
serrata (extensive RH). As discussed
in the literature, the triad does not
distinguish nuances in subdural
collections, encephalopathy, or RH.
The PediBIRN data set did not
collect data on lesser degrees of RH.
As such, our operational definition
of the triad, within this data set, is
more restrictive than the triad
discussed in critical literature.

Postclustering Analysis

We performed 2 additional
statistical analyses after partition
into 2 clusters. For each algorithm’s
partition, we compared the relative
frequencies of clinical variables
between the clusters. Significance
was determined by x2 tests or
Fisher’s exact tests, as appropriate,
in which the Haldane-Anscombe
correction was applied if any cell
count was 0. Strength of association
was determined by odds ratios
(ORs) with 95% confidence intervals
(CIs). This was done both for
variables used to partition the
clusters and for select variables not
used in cluster analysis.

We also analyzed the relationship
between the partitions developed by

each algorithm and by the triad.
Contingency tables were created to
analyze patient sorting into the
resulting clusters. Similarity
between resulting partitions was
assessed for significance by x2

analysis and for strength by the
accuracy of 1 partition at predicting
a comparison partition. Treating
physicians’ determination of abuse
likelihood was dichotomized
(definite and/or probable AHT
versus undetermined or definite
and/or probable non-AHT).

RESULTS

The 9 separate results, created by
using the K-means algorithm
specifying 2 through 10 clusters,
were each evaluated by the
silhouette and the gap-statistic
methods. The K-means result in
which the statistician specified 2
clusters had the best mathematical
characteristics. The silhouette width
of this solution was 0.22, and the
gap statistic was 0.48.

To compare the results of divisive
and agglomerative hierarchical
analysis to the results of the K-
means results, the 2-cluster
partitions of the hierarchical
algorithms were chosen for further
analysis. Silhouette widths and gap
statistics are provided here, for
description, but were not used in
choosing the 2 cluster solutions for
these algorithms. The silhouette
width for partition into 2 clusters by
the divisive hierarchical algorithm
was 0.38, and the gap statistic was
0.23. For partition by the
agglomerative hierarchical
algorithm, silhouette width was
0.35, and the gap statistic was
0.23. Although physicians’ final
diagnosis of definitive or probable
AHT was not used in developing
any partition, it was substantially
associated (P < .001 and OR>10)
with 1 of the clusters produced by
each algorithm, which we will
refer to as cluster 1. We will refer
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to the cluster that did not associate
with physician-diagnosed AHT as
cluster 2.

The triad, by design, divides the
population into 2 clusters. The
cluster that manifested the triad
also associated strongly to
physicians’ final diagnosis of
definitive or probable AHT and will
be referred to as cluster 1. We will
refer to individual clusters by the
partition method and their
numerical label (K-means 1, K-
means 2, divisive 1, divisive 2,
agglomerative 1, agglomerative 2,
triad 1, and triad 2)

The within-algorithm comparisons
of cluster 1 with cluster 2 (K-means
1 with K-means 2, divisive 1 with
divisive 2, agglomerative 1 with
agglomerative 2, and triad 1 with
triad 2) produced informative
results. Most variables occurred
with significantly greater frequency
(P < .05) in 1 of the clusters for
each of the 3 mathematical
algorithms. (Table 1) Variables
making the most substantial
contribution to differentiating
clusters (P < .001 and OR > 10 or
<0.1 in all 3 algorithms) were
imaging patterns indicating brain
hypoxemia-ischemia in any
distribution; acute encephalopathy
before admission, encephalopathy
lasting >24 hours, and
encephalopathy lasting >24 hours
with subsequent deterioration;
respiratory compromise before
admission; the presence of SDH or
fluid collection; and
ophthalmologist-confirmed
retinoschisis.

By definition, clinical
encephalopathy, SDH or fluid
collection, and extensive RH made a
substantial contribution (P < .001
and OR > 10 or <0.1) to
partitioning by the triad. There were
differences between partition by the
triad and partition by the K-means,
divisive, and agglomerative

algorithms. Imaging indications of
parenchymal brain injury and
retinoschisis had lower ORs in
partition by the triad than the 3
cluster algorithms. The duration of
encephalopathy differed. Brief
encephalopathy that resolved before
admission associated statistically
with the triad-1 cluster but was
nonsignificant in the K-means
partition and associated with the
divisive 2 and agglomerative 2
clusters. Other differences in
encephalopathy duration and SDH
distribution may be seen in Table 1.

The ages of the children in the K-
means 1 cluster of the K-means
partition were slightly younger
(mean 8.61 vs 10.39 months) than
those in the K-means 2 cluster (P 5
.046) (Table 2). There was no
statistically significant difference in
mean age between divisive 1 and
divisive 2, agglomerative 1 and
agglomerative 2, and triad 1 and
triad 2. The ability to walk or cruise
was not statistically different
between clusters 1 and 2 in any
partition.

When variables not used in the
cluster algorithms were analyzed,
there were significant differences
between clusters 1 and 2, as defined
by each of the 3 algorithms and by
the triad (Table 3). For each
algorithm and for the triad,
caregiver admission of abuse,
physician-identified changes in the
reported clinical history, and
physician-identified developmental
inconsistencies in reported child
behavior were all significantly more
frequent in cluster 1. Independently
witnessed unintentional injury was
significantly less frequent in cluster
1. Caregiver admission of abuse had
a substantial (P < .001 and OR >

10) relationship to being in the K-
means 1 cluster. Independently
witnessed unintentional injury had a
substantial (P < .001 and OR <

0.10) relationship to being in the
triad-2 cluster.

Pairwise comparisons of 6
combinations between the 3
algorithms or the triad revealed
significant similarities in their
partitions, each achieving a x2

<0.001. (Table 4) The K-means and
divisive hierarchical algorithms
were the most closely related, with
an accuracy of 94.8% in predicting
one another. All 3 mathematical
algorithms agreed in the assignment
of 87.8% of patients, 122 to cluster
1 and 317 to cluster 2.

DISCUSSION

The evidence base for diagnosing
AHT in children with neurotrauma
relies on a series of case-control
studies and meta-analyses of those
studies.14–30 Cohorts of AHT cases
have been separated from controls
by various methods: physician
diagnosis,15,16,22 consensus opinion
of a multidisciplinary
team,14,17,18,22,23,26,28,29 predefined
criteria designed to avoid indicators
under study,14,19–21,29 and confessed
abuse versus a public non-AHT
event.22 Results of the various
methods have been consistent,
lending strength to the findings.
Some authors have pointed to
circularity inherent in some of these
methods, dismissing the literature as
invalid.31 Cluster analysis uses an
entirely different approach,
identifying divisions in a body of
data by the mathematical
distribution of data points. By
applying cluster analysis to a cohort
of children with neurotrauma,
excluding data referencing physician
diagnosis or judgements of historical
consistency, we have sorted patients
without this circularity.34

The results of 3 mathematical
cluster analyses indicate that the
population of children with
neurologic injury admitted to a PICU
has at least 2 distinguishable
subpopulations. As a correlate, these
results reject that the objective
clinical presentations of these
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TABLE 1 Between-Cluster Comparisons of 32 Reliable Clinical and Radiologic Variables Included in the Unsupervised Cluster Analysis, Listed in
Descending Order of Their Relative Importance to Patient Assignment into Cluster 1

Variable K-Means Divisive Hierarchical Agglomerative Hierarchical Triad

Acute encephalopathy
before admission,
lasting >24 h, with
deterioration
P <.001a <.001a <.001a <.001b

OR (95% CI) 335.30 (46.05–2441.34)a 519.17 (70.97–3797.66)a 72.15 (32.98–157.87)a 9.00 (5.44–14.89)b

Bilateral brain hypoxia,
ischemia, and/or
swelling
P <.001a <.001a <.001a <.001b

OR (95% CI) 91.21 (42.14–197.43)a 141.10 (66.77–298.20)a 116.32 (58.90–229.71)a 7.76 (4.93–12.24)b

Brain hypoxia, ischemia,
and/or swelling
involving the subcortical
brain
P <.001a <.001a <.001a <.001b

OR (95% CI) 70.44 (32.73–151.62)a 111.00 (52.04–236.75)a 170.74 (78.85–369.71)a 6.93 (4.39–10.94)b

Acute encephalopathy
before admission,
lasting >24 h
P <.001a <.001a <.001a <.001a

OR (95% CI) 51.00 (28.59–90.99)a 68.48 (17.83–96.68)a 29.45 (17.33–50.03)a 10..35 (6.50–16.47)a

Any brain hypoxia,
ischemia, and/or
swelling
P <.001a <.001a <.001a <.001b

OR (95% CI) 36.70 (21.83–61.69)a 96.89 (49.02–191.5)a 144.11 (60.12–345.44)a 6.87 (4.39–10.75)b

Acute encephalopathy
before admission
P <.001a <.001a <.001a <.001a

OR (95% CI) 38.65 (19.00–78.60)a 41.52 (17.83–96.68)a 13.20 (7.18–24.27)a 381.73 (23.56–6184.68)a

Retinoschisis confirmed by
an ophthalmologist
P <.001a <.001a <.001a <.001b

OR (95% CI) 30.76 (7.23–130.85)a 40.38 (9.48–172.04)a 16.76 (6.27–44.83)a 8.42 (3.74–18.94)b

Acute respiratory
compromise before
admission
P <.001a <.001a <.001a <.001a

OR (95% CI) 22.81 (14.10–36.89)a 35.30 (20.05–62.14)a 19.44 (11.46–32.98)a 10.55 (6.49–17.16)a

Any SDH(s) or fluid
collection(s)
P <.001a <.001a <.001a <.001a

OR (95% CI) 21.88 (9.96–48.06)a 16.04 (7.30–35.26)a 11.30 (5.37–23.78)a 186.25 (11.50–3017.02)a

Interhemispheric SDH
P <.001a <.001a <.001b <.001a

OR (95% CI) 18.95 (11.88–30.25)a 13.01 (8.17–20.73)a 9.30 (5.86–14.76)b 11.47 (6.98–18.85)a

RH(s) described by an
ophthalmologist as
dense, extensive,
covering a large
surface area, and/or
extending to the ora
serrata
P <.001a <.001a <.001b <.001a

OR (95% CI) 17.85 (11.07–28.79)a 11.05 (7.06–17.30)a 9.62 (6.13–15.11)b 3148.13 (190.59–52 000.93)a

Bilateral SDH
P <.001a <.001b <.001b <.001b

OR (95% CI) 13.02 (8.38–20.24)a 8.36 (5.41–12.90)b 6.90 (4.44–10.72)b 5.87 (3.77–9.16)b
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TABLE 1 Continued

Variable K-Means Divisive Hierarchical Agglomerative Hierarchical Triad

Seizure(s) before
admission
P <.001a <.001b <.001b <.001b

OR (95% CI) 12.89 (8.23–20.19)a 7.89 (5.13–12.13)b 4.56 (2.99–6.95)b 7.79 (4.96–12.23)b

Brain contusion(s),
laceration(s) or
hemorrhage(s)
compatible with diffuse
traumatic axonal injury
P <.001b <.001b <.001a .343c

OR (95% CI) 8.63 (2.86–26.09)b 8.32 (2.99–23.18)b 30.42 (6.98–132.57)a 1.56 (0.62–3.97)c

AST or ALT level >80 IU/L
any time after hospital
admission
P <.001b <.001b <.001b <.001b

OR (95% CI) 5.90 (3.69–9.44)b 7.15 (4.46–11.47)b 5.53 (3.48–8.80)b 3.75 (2.36–5.94)b

Skeletal survey that
revealed fracture(s)
moderately or highly
specific for abuse
P <.001b <.001b <.001b <.001b

OR (95% CI) 5.40 (3.28–8.88)b 4.29 (2.65–6.94)b 4.20 (2.59–6.81)b 2.99 (1.84–4.87)b

Any brain parenchymal
contusion(s),
laceration(s), or
hemorrhage(s) involving
the subcortical (or
deeper) brain
P <.001b <.001b <.001a .096c

OR (95% CI) 5.50 (2.58–11.69)b 6.23 (2.98–13.04)b 14.34 (6.11–33.68)a 1.82 (0.89–3.71)c

Any bruising involving the
child's ear(s), neck, or
torso
P <.001b <.001b <.001b <.001b

OR (95% CI) 3.42 (2.19–5.33)b 4.12 (2.63–6.47)b 3.80 (2.42–5.99)b 4.24 (2.67–6.71)b

CT scan–confirmed
intraabdominal injuries
P .004b .001b .01b 1.000c

OR (95% CI) 4.29 (1.47–12.56)b 5.52 (1.88–16.17)b 3.74 (1.36–10.23)b 1.02 (0.32–3.23)c

Skin bruising, abrasion(s),
or laceration(s) in $2
distinct locations other
than the knees, shins,
or elbows
P <.001b <.001b <.001b <.001b

OR (95% CI) 2.71 (1.73–4.23)b 3.04 (1.93–4.78)b 2.20 (1.39–3.49)b 2.41 (1.51–3.84)b

Any subarachnoid
hemorrhage(s)
P <.001b <.001b <.001 .017b

OR (95% CI) 2.42 (1.63–3.58)b 3.31 (2.20–4.97)b 3.52 (2.32–5.35)b 1.68 (1.10–2.57)b

Any brain parenchymal
contusion(s),
laceration(s), or
hemorrhage(s)
P .008b <.001b <.001b .671c

OR (95% CI) 1.83 (1.17–2.86)b 2.26 (1.43–3.55)b 3.13 (1.98–4.97)b 1.12 (0.68–1.85)c

Acute encephalopathy
before admission,
resolved before
admission
P .442c <.001d <.001d <.001b
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children occur across a spectrum of
severity, without clear division, or in
random combinations of findings
without pattern. Cluster results are
generally considered appropriate
when silhouette width is >0.2 and

are considered strong when
silhouette width is >0.6.34 Each of
the 3 algorithms we deployed
generated 2-cluster results with a
silhouette width >0.2, each partition
pair correlated with a x2 <0.001

and accuracy >88%, and all agreed
on the assignment of 87.8% of
patients, indicating that partition
was justifiable and robust. Although
partition implies that a latent factor
operated to produce 2 subpopulations

TABLE 1 Continued

Variable K-Means Divisive Hierarchical Agglomerative Hierarchical Triad

OR (95% CI) 0.80 (0.45–10.42)c 0.27 (0.12–0.60)d 0.37 (0.17–0.80)d 2.54 (1.46–4.41)b

Child cruising or walking
before admission
P .06c .417c .159c .572c

OR (95% CI) 0.67 (0.44–1.02)c 0.84 (0.54–1.29)c 0.72 (0.45–1.14)c 0.88 (0.55–1.39)c

Unilateral SDH
P .007d .078c .115c .863c

OR (95% CI) 0.54 (0.34–0.85)d 0.66 (0.42–1.05)c 0.68 (0.42–1.10)c 1.04 (0.66–1.66)c

Acute encephalopathy
before admission,
resolved within 24 h
P .079c .032d .001d .507c

OR (95% CI) 0.57 (0.30–1.07)c 0.47 (0.23–0.95)d 0.24 (0.09–0.61)d 0.80 (0.41–1.56)c

Craniofacial bruising,
abrasion(s), subgaleal
hematoma(s), or
cephalohematoma(s)
P <.001d .024d .091d .003d

OR (95% CI) 0.50 (0.34–0.73)d 0.64 (0.43–0.94)d 0.71 (0.47–1.06)d 0.54 (0.36–0.81)d

Any skull fracture(s) other
than an isolated,
nondiastatic, linear
parietal skull fracture
P .002d .071c .689c <.001d

OR (95% CI) 0.51 (0.33–0.79)d 0.67 (0.43–1.04)c 0.91 (0.59–1.42)c 0.27 (0.15–0.49)d

Any skull fracture(s)
P <.001d <.001d <.001d <.001d

OR (95% CI) 0.15 (0.10–0.23)d 0.23 (0.15–0.34)d 0.33 (0.21–0.50)d 0.13 (0.08–0.21)d

An isolated, unilateral,
nondiastatic, linear
parietal skull fracture
P <.001e <.001d <.001d <.001d

OR (95% CI) 0.08 (0.04–0.18)e 0.11 (0.05–0.23)d 0.13 (0.06–0.28)d 0.14 (0.06–0.32)d

Any epidural
hemorrhage(s)
P <.001e <.001e <.001d <.001d

OR (95% CI) 0.07 (0.03–0.21)e 0.10 (0.03–0.27)e 0.11 (0.04–0.32)d 0.13 (0.05–0.36)d

ALT, alanine aminotransferase; AST, aspartate aminotransferase.
a Substantial association with cluster 1 (P < .001 and OR > 10).
b Significant association with cluster 1 (P < .001 and OR # 10 but >1).
c Statistically insignificant (P > .05).
d Significant association with cluster 2 (P < .001 and OR $ 0.10 but <1).
e Substantial association with cluster 2 (P < .001 and OR < 0.10).

TABLE 2 Age Differences Between Clusters for 3 Algorithms and the Triad

Age, mo

K-Means Divisive Agglomerative Triad

K-means 1 K-means 2 Divisive 1 Divisive 2 Agglomerative 1 Agglomerative 2 Triad 1 Triad 2

Mean 8.61 10.39 9.36 9.94 9.04 10.04 8.35 10.23
SD 98.94 9.75 9.39 9.56 9.45 9.52 7.74 9.98
Difference, P .046 .533 .299 .057

Significance tested by unpaired t test.
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within the PediBIRN cohort, our
cluster results alone do not reveal
that the difference was AHT.

For each algorithm, children in
cluster 1 manifested significantly
increased rates of SDH other than
unilateral contact SDH, acute
encephalopathy that did not resolve
within 24 hours, extensive RH,
retinoschisis, abuse-associated
fractures on skeletal survey,
concerning traumatic skin findings,
and laboratory or imaging
indications of intraabdominal injury.
By contrast, children in cluster 2
manifested high rates of findings

that indicate impact to the head:
skull fracture, epidural hemorrhage,
and extracranial craniofacial injury.
It bears repeating that partition into
clusters 1 and 2 made no reference
to physicians’ diagnosis of AHT or
any research definition of AHT. And
yet, mathematical partition based on
objective, reliably determined
clinical variables replicated the
results of decades of literature on
the characteristics of children with
AHT.14–30 By replicating the
segregation of clinical findings in the
case-control literature, the cluster
analyses demonstrate that the
division of cases from controls

reflected natural latent divisions in
the larger population of young
children with neurotrauma. The fact
that these differences extended
beyond neurologic and eye findings
to include skeletal fractures, skin
injuries, and visceral injuries
supports the inference that inflicted
trauma was closely related to the
latent variable responsible for
partition.

Given that partition into clusters 1
and 2 replicates clinical associations
found by researchers into the
characteristics of children with AHT,
it is unsurprising that partition was
significantly associated with clinical
diagnosis of AHT by treating
physicians. We suspect that
diagnosing physicians applied the
very case-control studies we have
previously referenced in their
clinical determinations. Physicians
also appear to have considered
nuances and findings not used by
the clustering algorithms when
making their diagnoses, diagnosing
both AHT and non-AHT within
clusters 1 and 2 of each algorithm.
This is consistent with the finding
that silhouette width never

TABLE 3 Between-Cluster Comparisons of Variables Not Included in the Unsupervised Cluster Analysis, Listed in Descending Order of Their Relative
Importance to Patient Assignment into the Cluster 1

K-Means Divisive Hierarchical Agglomerative Hierarchical Triad

Physician final diagnosis of definitive or probable AHT
P <.001a <.001a <.001a <.001a

OR (95% CI) 38.97 (20.62–73.66)a 27.85 (14.48–53.59)a 19.29 (10.26–36.25)a 45.37 (18.08–113.83)a

Caregiver admission of AHT
P <.001a <.001b <.001b <.001b

OR (95% CI) 11.68 (4.41–30.92)a 5.91 (2.72–12.82)b 6.07 (2.84–12.97)b 6.85 (3.20–14.67)b

History of unintentional trauma consistent with repetition
over time
P <.001c <.001c <.001c <.001c

OR (95% CI) 0.10 (0.07–0.17)c 0.12 (0.08–0.20)c 0.14 (0.09–0.23)c 0.20 (0.12–0.32)c

History of AHT consistent with the child's gross
motor skills
P <.001c <.001c <.001c <.001c

OR (95% CI) 0.16 (0.11–0.25)c 0.20 (0.13–0.31)c 0.21 (0.13–0.33)c 0.31 (0.20–0.47)c

Independently witnessed AHT
P <.001c <.001c .002c <.001d

OR (95% CI) 0.12 (0.04–0.39)c 0.15 (0.05–0.50)c 0.18 (0.05–0.59)c 0.06 (0.009–0.46)d

a Substantial association with cluster 1 (P < .001 and OR > 10).
b Significant association with cluster 1 (P < .001 and OR # 10 but >1).
c Significant association with cluster 2 (P < .001 and OR $ 0.10 but <1).
d Substantial association with cluster 2 (P < .001 and OR < 0.10).

TABLE 4 Agreement Between the Various Methods of Partition Into Cluster 1 and Cluster 2

K-Means
Divisive

Hierarchical
Agglomerative
Hierarchical

Divisive hierarchical
P <.001 — —

Accuracy of agreement between partitions 0.948 — —

95% CI 0.928–0.966 — —

Agglomerative hierarchical
P <.001 <.001 —

Accuracy of agreement between partitions 0.884 0.924 —

95% CI 0.853–0.911 0.897–0.946 —

Triad
P <.001 <.001 <.001
Accuracy of agreement between partitions 0.836 0.824 0.800
95% CI 0.801–0.867 0.788 –0.856 0.762–0.834

Rows indicate P value, accuracy of agreement between partitions, and 95% CIs for accuracy. —, not applicable.

8 BOOS et al

D
ow

nloaded from
 http://publications.aap.org/pediatrics/article-pdf/149/1/e2021051742/1227007/peds_2021051742.pdf by U

T R
io G

rande Valley user on 28 January 2022



exceeded 0.6 for any cluster
algorithm, indicating that the 2
clusters are not highly discreet.

Authors who have questioned the
existing literature guiding diagnosis
of AHT have also suggested that
research should rely on confession
to identify children with AHT.31 We
treated both confessions and the
observations of independent
witnesses as subjective and not
susceptible to reliability testing,
excluding consideration of these
variables by the cluster algorithms.
Despite this, when there was an
admission of AHT, it associated
with cluster 1, and when there was
an independent witness to an
unintentional injury, it associated
with cluster 2. Viewed another
way, nonmedical, firsthand witness
data agreed with cluster partition
and with AHT characteristics
identified in decades of literature
and in our 3 mathematical
partitions.

Final, interesting outcomes were age
and developmental differences
between clusters. Much earlier
research into characteristics of AHT
have found children with AHT to be
significantly younger than those in
comparison groups.14,17–19,22,23,25–28,30

Only 1 of the clusters, K-means 1, had
a significant association with age,
based on a difference of 1.78 months,
with a P of .046. The ability to walk or
cruise was not statistically different
between clusters 1 and 2 of any
algorithm. It follows that physiologic
and developmental variables related to
age and maturity are unlikely to be
responsible for other differences
between cluster pairs.

We began this study to see whether
a noncircular research method, blind
to issues of abuse, would replicate
the clinical associations found in the
case-control literature that
references a determination of abuse
in its methods. What we found was
not only that it did but that the

clinical findings making the most
contribution to partition were
encephalopathy, SDH, and retinal
injury. This immediately called to
mind the triad of findings that some
authors have asserted are both
poorly supported by research
literature and heavily relied on by
physicians to diagnose AHT.31–33 For
this reason, we looked at partition
by the closest surrogate we could
construct for this triad. The
partition by these criteria was
statistically similar to the partitions
derived by the 3 mathematical
algorithms, with sorting accuracies
of 80.0% to 83.6%. Furthermore,
many of the associations with
extracephalic findings attributable to
abuse, and with available firsthand
reports of abuse or unintentional
injury, were preserved in this
partition. As such, it is unsurprising
that the triad, when incorporating
the additional component of
requiring that RHs be “dense,
extensive and covering a large
surface area or extending to the ora
serrata,” has a high specificity for
physicians’ diagnosis of AHT
(98.0%), although a modest
sensitivity (47.8%) and accuracy
(73.2%). The triad, too, appears to
reflect a natural division in the
population of children with
neurologic injury, reflective of a
latent variable that is related to the
diagnosis of AHT.

We have identified several
limitations to this study. The data
used in cluster analysis were
captured in a PICU setting on
patients with acute symptomatic
injury. It is unknown if the results
would have been the same in a non-
PICU setting or in children with
nonacute intracranial injury. Bias
may be introduced in ascertainment
of certain findings. All patients had a
history, physical examination, and
head imaging by CT or MRI. Retinal
examination and skeletal survey
were performed at physicians’

discretion, and thus the absence of
fractures and RHs could have been
the result of omitted rather than
normal ophthalmologic or radiologic
examinations. Among the 500
patients, 322 patients underwent
both skeletal survey and retinal
examination, and 109 patients
underwent neither evaluation.
Retinoschisis was the only
inconsistently ascertained finding
that had a substantial (P < .001 and
OR > 10) association with cluster 1
and only occurred in 30 cases.
Thus, the variables that most
substantially contributed to
partition were universally
assessed, and the influence of
ascertainment bias appears to be
minimized. Finally, the variables
captured in the study were chosen
as relevant to child abuse. It is
conceivable that the inclusion of
other variables might have
produced different results.

CONCLUSIONS

When mathematical clustering
methods based solely on objectively
and reliably ascertained clinical
variables were used to analyze a
cohort of young children with
neurologic injury, 2 subpopulations
emerged. One of these
subpopulations was characterized
by an elevated prevalence of
imaging patterns indicating brain
hypoxemia-ischemia, SDH other than
unilateral contact SDH, retinal
findings, extracephalic injuries, the
absence of clear evidence of head
impact, caregiver admission of AHT,
and physician-identified
inconsistencies in provided trauma
histories. These differences replicate
differences previously found in case-
control literature as distinguishing
AHT, differences that treating
physicians appeared to view as
highly informative to the diagnosis
of AHT. We conclude that there are
aspects unique to AHT that produce
discernible subpopulations and that
the division of cases from controls

PEDIATRICS Volume 149, number 1, January 2022 9

D
ow

nloaded from
 http://publications.aap.org/pediatrics/article-pdf/149/1/e2021051742/1227007/peds_2021051742.pdf by U

T R
io G

rande Valley user on 28 January 2022



in previous research on AHT
reflected a natural division in the
larger cohort. Partition of these
same patients by the presence or
absence of a proposed triad of
findings produces similar results
and is likely related to the same
latent factor. These results support
the preponderant diagnostic
practices in the pediatric
community. By arriving at similar
results through very different
methods, this study validates
previous literature and should
strengthen physician’s confidence in
the current diagnostic paradigm and
their presentation of that paradigm
in court.
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